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Abstract 

Background:  Although the diagnostic method for coronary atherosclerosis heart disease (CAD) is constantly 
innovated, CAD in the early stage is still missed diagnosis for the absence of any symptoms. The gene expression 
levels varied during disease development; therefore, a classifier based on gene expression might contribute to CAD 
diagnosis. This study aimed to construct genetic classification models for CAD using gene expression data, which may 
provide new insight into the understanding of its pathogenesis.

Methods:  All statistical analysis was completed by R 3.4.4 software. Three raw gene expression datasets (GSE12288, 
GSE7638 and GSE66360) related to CAD were downloaded from the Gene Expression Omnibus database and 
included for analysis. Limma package was performed to identify differentially expressed genes (DEGs) between CAD 
samples and healthy controls. The WGCNA package was conducted to recognize CAD-related gene modules and 
hub genes, followed by recursive feature elimination analysis to select the optimal features genes (OFGs). The genetic 
classification models were established using support vector machine (SVM), random forest (RF) and logistic regres-
sion (LR), respectively. Further validation and receiver operating characteristic (ROC) curve analysis were conducted to 
evaluate the classification performance.

Results:  In total, 374 DEGs, eight gene modules, 33 hub genes and 12 OFGs (HTR4, KISS1, CA12, CAMK2B, KLK2, DDC, 
CNGB1, DERL1, BCL6, LILRA2, HCK, MTF2) were identified. ROC curve analysis showed that the accuracy of SVM, RF and 
LR were 75.58%, 63.57% and 63.95% in validation; with area under the curve of 0.813 (95% confidence interval, 95% CI 
0.761–0.866, P < 0.0001), 0.727 (95% CI 0.665–0.788, P < 0.0001) and 0.783 (95% CI 0.725–0.841, P < 0.0001), respectively.

Conclusions:  In conclusion, this study found 12 gene signatures involved in the pathogenic mechanism of 
CAD. Among the CAD classifiers constructed by three machine learning methods, the SVM model has the best 
performance.

Keywords:  Coronary atherosclerosis heart disease, Classification model, Machine learning, Support vector machine, 
Random forest, Logistic regression
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Background
Coronary atherosclerosis heart disease (CAD) is the 
most common cardiovascular diseases (CVDs) and is 
characterized by high morbidity and mortality [1]. CVD 
accounted for one-third of all deaths, and there were an 
estimated 17.92 million deaths due to CVDs worldwide in 
2015 [2]. In China, the summary of China cardiovascular 
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disease report (2018) estimated that about 290 million 
people are suffering from CVDs, and 11 million of them 
are CAD patients [3]. A previous study showed that over 
40% of deaths in China are directly caused by CAD or its 
complications [4]. Therefore, a comprehensive analysis of 
multiple biomarkers interaction is of great significance to 
understand the pathogenesis of CAD.

With the development of technology, the diagnosis of 
CAD is constantly innovated. Invasive coronary angi-
ography is so far the gold standard by which the pres-
ence and severity of CAD could be defined, especially 
in patients with significant left ventricular dysfunction 
[5]. Coronary computed tomography angiography is 
increasingly being considered as an alternative diagnos-
tic method because of its effectiveness, safety and non-
invasion [6]. In addition, magnetic resonance coronary 
angiography provides a superior soft tissue characteriza-
tion, and is well suited to the detection of adverse plaque 
characteristics [7]. However, CAD in the early stage is 
still missed diagnosis for the absence of any symptoms 
or mild degree of disease [8]. CAD is influenced by both 
environmental [9, 10] and genetic factors [11]. Actu-
ally, gene expression levels varied before morphological 
abnormality of the tissue during CAD development [12]. 
Therefore, genetic classification models might contribute 
to CAD diagnosis.

Due to the extensive application of gene chip and next-
generation sequencing technology, a large amount of 
gene expression data is stored in databases, for exam-
ple, Gene Expression Omnibus (GEO, https://​www.​ncbi.​
nlm.​nih.​gov/​geo/) [13]. GEO supplies plentiful data for 
researchers to investigate the association between gene 
expression and CAD [14–16]. Some analytical methods 
have been used as approaches for microarray data min-
ing. The bioinformatics analyses could reveal the bio-
logical functions of CAD-related genes [17]. The machine 
learning methods contribute to finding genetic biomark-
ers or constructing classifiers of CAD [18].

In the present study, we obtained CAD-related gene 
chip data from GEO open resources. Differentially 
expressed genes (DEGs) were screened between CAD 
samples and healthy controls, followed by the weighted 
gene co-expression network analysis (WGCNA) [19] by 
which hub genes with the highest correlation with CAD 
were identified. Subsequently, the recursive feature elimi-
nation (RFE) [20] algorithm was performed to select the 
optimal features genes (OFGs) for CAD from hub genes. 
By utilizing machine learning methods, including sup-
port vector machine (SVM) [21], random forest (RF) [22] 
and logistic regression (LR), the genetic classification 
models of CAD were finally established. This study aimed 
to identify potential hub genes and construct genetic 
classification models for CAD, which may provide new 

insight into the understanding of its pathogenesis and 
facilitate further therapeutic studies.

Materials
Data collection, quality evaluation and preprocessing
In this study, three raw datasets (GSE12288, GSE7638 
and GSE66360) and corresponding annotation files were 
acquired from GEO. The simpleaffy package was used 
to evaluate the quality of chips and draw a quality con-
trol diagram, the unqualified samples would be marked 
with “bioB” in the quality control diagram and further 
excluded. Then, affy package was performed to standard-
ize raw data, including background correction, normali-
zation, perfect match (PM) probe correction and probe 
expression value calculation. After that, robust multi-
array average (RMA) algorithm [23] was conducted to 
normalize microarray data and perform a log2 transfor-
mation. The probe expression value is estimated based on 
a stochastic model employed by the PM signal distribu-
tion. Afterwards, each probe set in these three datasets 
was annotated with gene symbol according to corre-
sponding annotation files. Furthermore, k-nearest neigh-
bor (KNN) function in the impute package was carried 
out to fill in the missing data. Finally, the complete gene 
expression profiles were acquired. The impute.knn is a 
function to impute missing expression data using KNN 
[24]. For each gene with missing values, k nearest neigh-
bors are selected using a Euclidean metric, and the miss-
ing elements are imputed by averaging those elements of 
its neighbors.

Batch effect removal and differential expression analysis
The SVA package was carried out for correcting the 
batch effects of these three normalized datasets. The 
limma package [25, 26] was performed to identify DEGs 
between CAD samples and healthy controls in three 
datasets and the integrated dataset, respectively. And the 
Benjamini–Hochberg method was performed for multi-
ple testing correction, by which the adjusted P value was 
calculated. The integrated dataset was the combination 
of GSE12288, GSE7638 and GSE66360. The thresholds 
of adjusted P < 0.001, |log2(foldchange, FC)|> 0.263 were 
set to define DEGs. Furthermore, volcano plots were 
achieved using ggplot2 package to investigate the whole 
gene comparison results.

Weighted gene co‑expression network analysis
Within the integrated dataset, the WGCNA package was 
conducted to construct the scale-free co-expression net-
work and to identify hub genes from adjusted P < 0.001 
genes. The theory behind WGCNA algorithm have been 
described in detail previously [27]. Firstly, the absolute 
value of correlation coefficient between the pair of genes i 
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and j across of all subjects was defined as co-expression 
similarity ( Sij =

∣

∣cor
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i, j
)
∣

∣ ). Therefore, S =
[

Sij
]

 was used 
to represent the co-expression correlation matrix. Sec-
ondly, the S was transformed into an adjacency matrix by 
a power function: aij = power

(

Sij, β
)

=
∣

∣Sij
∣

∣

β , where the 
soft thresholding power parameter, β, was set to 5 in this 
study. Thirdly, the topological overlap matrix (TOM) was 
calculated on the following function: wij =

lij+aij
min{ki,kj}+1−aij

 , 
where lij =

∑

µ

aiµajµ , ki =
∑

µ

aiµ , kj =
∑

µ

aiµ . The μ 

denotes genes connected with gene i or j. Then, the dis-
similarity was defined as dwij = 1− wij , thus forming a 
dissimilarity matrix. Finally, average linkage hierarchical 
clustering was conducted based on the TOM-based dis-
similarity with a minimum size of 30 for the genes den-
drogram to classify genes with similar expression profiles 
into modules. Each module was assigned to the corre-
sponding color.

A dynamic hybrid branch cutting method was imple-
mented on the TOM-based dendrogram to identify 
module eigengenes (ME). ME was calculated by the first 
principal component of a given module, which could rep-
resent the expression patterns of all genes. A phenotypic 
trait-based gene significance measure was defined as the 
absolute value of correlation between the gene i and the 
phenotypic trait (T): GSi = |cor(i, T)| . T is the binary 
variable for CAD status (patient status = 1 and healthy 
control = 0). GSi denotes the association between gene i 
and T. Module membership (MM) represent the correla-
tion between gene i and ME: MMi = |cor(i,ME)| , which 
explains associations between gene i and the correspond-
ing module. Hub genes represent a series of genes that is 
significantly connected to a relevant module [28]. In the 
current study, a cut of |GSi| > 0.2 , |MMi| > 0.8 was con-
sidered as the threshold of hub genes.

Selection of optimal feature gene sets
RFE was applied to select OFGs of CAD from hub genes 
in the integrated dataset using caret package. The OFGs 
can be used as identifiers of clinical diagnosis to con-
struct a CAD classifier based on their expression levels. 
Performances of different types of samples were evalu-
ated through combinations of iterative random features 
until the optimal feature combination was obtained. 
And, the number of cross-validation was set to 200 in 
this study. Later, the heatmap of the OFGs was drawn 
by pheatmap package to compare the expression levels 
between groups in datasets, respectively.

Construction and validation of genetic classification 
models
Three machine learning methods (SVM, RF and LR) were 
used to construct the CAD genetic classification models. 

SVM is a discriminant classifier defined by the classi-
fication hyperplane. The model is trained with labeled 
training samples, and then, the test samples are classi-
fied by the output of the optimal hyperplane [29]. RF is 
an integrated learning algorithm that combines different 
decision trees. Among the decision trees that constitute 
an RF model, each tree is an independent set generated 
based on random samples. Each tree learns and predicts 
independently, and the final result is determined by the 
mean value of all decision trees [30, 31]. LR is one of the 
GLM models, which have been regarded as an exten-
sion of the linear model that establishes the relationship 
between the mathematical expected value of the response 
variables and the predictive variables of the linear combi-
nation through the coupling function [32].

In the present study, 50% of samples in GSE12288 were 
selected randomly and used as a training dataset. The 
SVM, RF and LR classification models were constructed 
using e1071 package, randomForest package and glm 
function, respectively. Samples were classified into cases 
and controls according to the expression level of genes. 
To confirm the robustness and transferability of these 
constructed classifiers, internal and external validations 
were performed. Internal validation was carried out in 
the remaining 50% of samples of GSE12288, and external 
validation was performed in the combination of GSE7638 
and GSE66360 datasets. Then, the efficacy of models was 
comprehensively evaluated in terms of sensitivity (Se), 
specificity (Sp), positive predictive value (PPV), nega-
tive predictive value (NPV) and the area under the ROC 
curve (AUC). All statistical analyses were conducted 
using R 3.4.4 software.

Results
Data information
Figure  1 summarized the schematic overview of the 
study flow. In this study, three gene expression data-
sets related to CAD were acquired. The information of 
them was summarized in Table  1. A total of 481 sam-
ples were included for analysis, among which 269 sam-
ples were CAD patients and 212 were healthy control 
samples. After evaluation of chip quality, one sample 
(GSM1620893) belonging to healthy control group in 
GSE66360 was dropped (Additional file 1: Figure S1).

Integration of three datasets and identification 
of differentially expressed genes
After batch effect removal analysis, 12,395 genes and 
480 samples remained in the integrated dataset. DEGs 
were identified by differential expression analysis (Fig. 2). 
Briefly, when CAD samples were compared with healthy 
controls, 114 (31 upregulated and 83 downregulated), 
1157 (1112 upregulated and 45 downregulated) and 
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2484 (471 upregulated and 2013 downregulated) DEGs 
were recognized in GSE12288, GSE7638 and GSE66360, 
respectively (Fig. 2A–C). And, 374 DEGs were identified 
in the integrated dataset (Fig.  2D) in which 303 DEGs 
were upregulated and 71 were downregulated.

Hub genes identification using WGCNA
The expression data of 2546 genes that adjusted 
P < 0.001 were analyzed using WGCNA package to 
identify the co-expression patterns and hub genes. The 
threshold power of β = 5 was selected to ensure a scale‐
free network (Fig.  3A, B). The co-expression network 

contained eight modules in total and the module sizes 
ranged from 40 (pink) to 859 (turquoise). These mod-
ules were labelled with colours and depicted in the 
dendrograms provided in Fig. 3C. However, 387 genes 
were not similarly co-expressed with other genes in the 
network (grey). The associations between the MEs of 
modules and CAD status (patient status = 1 and healthy 
control = 0) were identified (Fig.  3D). The correlation 
coefficients (r) of modules indicated that they were 
all significantly correlated with CAD status (P < 0.05). 
The MEs of blue, green, yellow, brown, pink and red 
modules were positively correlated with CAD status 
(r > 0, P < 0.05), while MEs of turquoise and black mod-
ules were negatively correlated with CAD status (r < 0, 
P < 0.05). In this study, |GSi| > 0.2 and |MMi| > 0.8 
was considered as threshold for identifying hub genes, 
and 33 genes were identified from six modules in total 
(Fig. 3E, Table 2).

Construction of genetic classification models based 
on optimal feature genes
In order to obtain the optimal characteristic combi-
nation of genes representative of 33 hub genes, the 
RFE algorithm was adopted in the integrated data-
set. Finally, 12 hub genes were selected as OFGs, this 
OFGs combination had the lowest classification root 
mean square error (RMSE) of 25.54% (Fig.  4A). These 
12 OFGs were HTR4, KISS1, CA12, CAMK2B, KLK2, 
DDC, CNGB1, DERL1, BCL6, LILRA2, HCK and MTF2 
(Table  3), among which eight OFGs (HTR4, CA12, 
KLK2, DERL1, BCL6, LILRA2, HCK and MTF2) were 
upregulated, while the other four (KISS1, CAMK2B, 
CNGB1 and DDC) were downregulated. Hierarchi-
cal clustering analysis was then carried out in datasets 
based on expression data of OFGs (Fig. 4B–E).

In the current study, the training dataset contained 
111 (50%) samples in GSE12288 which were selected 
randomly. The SVM, RF and LR classifiers were con-
structed based on the expression of these 12 genes in 
the training dataset. Furthermore, the remained 50% of 
samples of GSE12288, and the combination of GSE7638 
and GSE66360 were deem to testing datasets for inter-
nal and external validation, respectively.

Fig. 1  Schematic overview of study flow. CAD, coronary 
atherosclerosis heart disease

Table 1  Information of the downloaded datasets

Dataset Case/control Country Specimen Probe number Platform

GSE12288 110/112 Switzerland Peripheral blood 22483 GPL96

GSE66360 49/50 USA Circulating endothelial cells 47000 GPL570

GSE7638 110/50 Switzerland Peripheral monocyte 14500 GPL571
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Validation and evaluation of classifiers performance
The results showed that SVM, RF and LR classifiers 
could accurately classify 105 (94.59%), 106 (95.50%) 
and 108 (97.30%) of the 111 samples in internal valida-
tion, respectively. In external validations, 195 (75.59%) 
of the 258 samples were accurately classified via SVM 

classifier, with AUC of 0.813 (95% confidence interval 
(95% CI): 0.761–0.866, P < 0.0001). RF classifier could 
exactly category 164 (63.57%) of 258 samples, with AUC 
of 0.727 (95% CI 0.665–0.788, P < 0.0001). LR classifier 
could precisely classify 165 (63.95%) of 258 samples, 
with AUC of 0.783 (95% CI 0.725–0.841, P < 0.0001). 
The ROC charts of samples were shown in Fig. 5.

Fig. 2  Volcano plots of datasets. The red nodes represent genes that adjusted P < 0.001 and log2FC > 0.263. The blue nodes represent genes that 
adjusted P < 0.001 and log2FC < − 0.263. The horizontal dotted line represents adjusted P = 0.001. Integrated dataset was the combination of 
GSE12288, GSE7638 and GSE66360. The analysis of differentially expressed genes between case group and control group was performed using 
Limma package
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The performance of these three classifiers was evalu-
ated using a variety of indicators, such as correct rate, Se, 
Sp, PPV and NPV, which were described in Table 4. In the 
internal validation, the accuracy appeared RF > LR > SVM, 

but the AUC SVM > RF > LR. In the external validation, 
both correct rate and AUC appeared SVM > LR > RF. 
The Se in SVM classifier was the highest (0.780, 95% CI 
0.707–0.842) and in LR classifier was the lowest (0.516, 

Fig. 3  Weighted gene co-expression network analysis. A, B Scale-free network test by which the soft thresholding power parameter was set to 5. 
C Hierarchical clustering. The branches of the tree represent the clusters of genes. The colors below the tree were gene modules that correspond to 
the clusters. D The correlation between gene modules and traits (disease), and red represents a positive correlation and green represents a negative 
correlation. E Hub genes. The red nodes represent hub genes screened by the threshold of absolute gene significance > 0.2 and absolute module 
membership > 0.8. The vertical dotted line represents absolute gene significance = 0.2, and the horizontal dotted line represents absolute module 
membership = 0.8. CAD, coronary atherosclerosis heart disease
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95% CI 0.435–0.596), respectively. The Sp in LR classi-
fier was the highest (0.869, 95% CI 0.786–0.928) and in 
RF classifier was the lowest (0.525, 95% CI 0.422–0.627). 
These results suggested that the constructed SVM clas-
sifier based on the 12 OFGs could be the best in the pre-
sent study.

Discussion
Based on gene expression data, machine learning meth-
ods can be applied in constructing classification mod-
els of disease and propose a deeper understanding for 

clinical diagnosis and treatment. In this study, three 
mRNA expression profiles related to 269 CAD and 212 
healthy control samples were downloaded from GEO. A 
total of 374 DEGs and 33 hub genes were identified by 
bioinformatics analyses. Accordingly, 12 OFGs (HTR4, 
KISS1, CA12, CAMK2B, KLK2, DDC, CNGB1, DERL1, 
BCL6, LILRA2, HCK and MTF2) were obtained and 
classification models were constructed through three 
machine learning methods. Finally, results of evaluating 
classifiers performance showed the SVM model was the 
best in the present study, with the AUC of 0.813 (95% 
CI 0.761–0.866), the sensitivity of 0.780 (95% CI 0.707–
0.842) and the specificity of 0.717 (95% CI 0.618–0.803), 
respectively.

Gene expression might change before morphological 
abnormality of the tissue, researchers demonstrated that 
macrophage C-type lectin receptor CLEC5A (MDL-1) 
mainly expressed in atherosclerotic lesional macrophages 
and elevated macrophage MDL-1 expression was asso-
ciated with early plaque progression [12]. Pulanco MC 
et al. found that C1q promoted macrophage survival and 
improved foam cell function, which may play an impor-
tant protective role in early atherosclerosis progression 
[33]. In addition, matrix metalloproteinases (MMPs) par-
ticipated in different mechanisms fundamental to athero-
thrombotic progression [34, 35], such as MMP-12 [36] 
and MMP-2 [37].

In the current study, eight (HTR4, CA12, KLK2, DERL1, 
BCL6, LILRA2, HCK and MTF2) of 12 potential critical 
genes were upregulated. Oksala found that CA12 expres-
sion was elevated in atherosclerotic plaques compared to 
control tissues (internal thoracic artery controls). And 
CA12 protein was expressed in the atheromatous core 
and to some extent in all vessel layers in plaques of all 
vessel beds, while only sparse cells were positive in con-
trol vessels [38]. Chronic inflammation is a hallmark of 
atherosclerosis, Barish GD examined the impact of the 
transcriptional repressor BCL6 on atherogenesis and 
revealed BCL6-SMRT/NCoR complexes could constrain 
immune responses and contribute to the prevention of 
atherosclerosis [39]. HCK and FGR are two Src tyrosine 
kinases, Medina demonstrated that Hck/Fgr-deficiency 
leads to reduced atherosclerotic lesion with concomitant 
reductions in macrophage accumulation and, paradoxi-
cally, lesion stability [40]. HTR4 is a member of the fam-
ily of serotonin receptors and associated with average and 
maximal carotid intima-media thickness measures [41]. 
Serotonin, also named as 5-hydroxytryptamine (5-HT), 
is a well-known vasoreactive amine that could affect the 
circulation of the heart. Human kallikrein 2 (KLK2, also 
called hK2) has an important in vivo regulatory function 
on Prostate-specific antigen (PSA) activity, and could 
convert the inactive precursor form of PSA to active PSA 

Table 2  The information of 33 hub genes identified by weighed 
gene co-expression network analysis

GS, gene significance with coronary atherosclerosis heart disease; P.GS, P value 
for gene significance with coronary atherosclerosis heart disease; MM, module 
membership; P.MM, P value for module membership

Gene symbol Module GS P.GS MM P.MM

ZAP70 Black − 0.273 1.11E−09 0.810 8.54E−113

HTR4 Blue 0.224 6.76E−07 0.853 6.29E−137

CA12 Blue 0.203 7.61E−06 0.845 7.38E−132

KLK2 Blue 0.209 4.07E−06 0.821 3.04E−118

DERL1 Brown 0.232 2.79E−07 0.807 3.38E−111

NFIL3 Green 0.211 3.01E−06 0.839 2.35E−128

BCL6 Green 0.240 1.03E−07 0.842 5.09E−130

FPR1 Green 0.220 1.09E−06 0.802 4.99E−109

ACSL1 Green 0.213 2.63E−06 0.834 2.15E−125

CSF3R Green 0.210 3.35E−06 0.815 3.28E−115

C5AR1 Green 0.238 1.35E−07 0.801 2.41E−108

NCF2 Green 0.271 1.58E−09 0.844 2.57E−131

CNGB1 Turquoise − 0.298 2.63E−11 0.877 4.70E−154

DDC Turquoise − 0.334 5.92E−14 0.811 1.47E−113

CAMK2B Turquoise − 0.339 2.17E−14 0.866 9.86E−146

HCN2 Turquoise − 0.222 8.74E−07 0.808 5.01E−112

MUC13 Turquoise − 0.436 1.21E−23 0.852 1.03E−136

KISS1 Turquoise − 0.383 3.52E−18 0.841 1.55E−129

JPH2 Turquoise − 0.254 1.64E−08 0.808 4.63E−112

ADRA2C Turquoise − 0.214 2.16E−06 0.810 9.52E−113

MTF2 Turquoise 0.233 2.49E−07 − 0.872 9.16E−151

LHX5 Turquoise − 0.237 1.55E−07 0.827 8.63E−122

EMID1 Turquoise − 0.239 1.23E−07 0.811 3.21E−113

HSD17B14 Turquoise − 0.285 2.14E−10 0.816 7.91E−116

RTEL1 Turquoise − 0.223 7.75E−07 0.813 3.04E−114

PRKCD Yellow 0.296 3.58E−11 0.841 2.05E−129

LILRA2 Yellow 0.254 1.56E−08 0.834 1.42E−125

PILRA Yellow 0.222 9.12E−07 0.870 3.90E−149

PGD Yellow 0.259 8.04E−09 0.808 4.25E−112

APLP2 Yellow 0.205 5.73E−06 0.816 7.83E−116

LYN Yellow 0.203 7.19E−06 0.822 4.14E−119

HCK Yellow 0.243 6.66E−08 0.882 3.17E−158

TYROBP Yellow 0.252 2.25E−08 0.875 2.03E−152
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[42]. PSA is a member of the human kallikrein family of 
serine proteases [43] and PSA is an established marker of 
myocardial infarction [44].

The other four (KISS1, CAMK2B, CNGB1 and 
DDC) of 12 OFGs were downregulated. The encoded 
protein of DDC catalyzes the decarboxylation of 

Fig. 4  Feature elimination curves of hub genes and heatmap of the 12 optimal feature genes in different dataset. A Feature elimination curves of 
hub genes. Root mean square error (RMSE) is the statistical parameter to determine the optimal feature genes after the analysis of recursive feature 
elimination algorithm. The lowest RMSE correspond with the best optimal feature gene set, based on which the model was trained by machine 
learning methods in 50% samples in GSE12288. B–E Heatmap of the 12 optimal feature genes in different dataset using pheatmap package. The 
red and blue colors indicate high and low expression, respectively, of the 12 optimal feature genes among samples. Upregulation, genes that higher 
expressed in case group than control group. Downregulation, genes that lower expressed in case group than control group. Integrated data was 
the combination of GSE12288, GSE7638 and GSE66360

Table 3  The result information of 12 optimal feature genes in limma package analysis

Integrated dataset was the combination of GSE12288, GSE7638 and GSE66360; foldchange, the fold change of the average gene expressional level going from control 
group to case group; adjusted P, the P value adjusted by Benjamini–Hochberg in comparing the gene expressional level between case group and control group

Gene symbol GSE12288 GSE7638 GSE66360 Integrated dataset

Foldchange Adjusted p Foldchange Adjusted p Foldchange Adjusted p Foldchange Adjusted p

BCL6 1.07 2.36E−01 1.20 7.07E−03 2.86 2.93E−09 1.27 1.34E−06

CA12 1.05 4.18E−04 1.06 1.99E−03 1.00 9.94E−01 1.08 6.80E−05

CAMK2B 0.88 1.02E−22 0.95 4.57E−02 1.02 8.29E−01 0.90 3.94E−12

CNGB1 0.89 2.72E−08 0.93 1.39E−02 0.83 4.21E−02 0.88 1.22E−09

DDC 0.90 1.03E−17 0.92 6.26E−03 1.00 9.87E−01 0.88 7.23E−12

DERL1 1.03 1.91E−01 1.29 4.81E−19 0.88 4.74E−01 1.17 3.29E−06

HCK 1.07 1.67E−01 1.16 5.43E−06 2.09 1.10E−03 1.28 9.15E−07

HTR4 1.11 4.11E−10 1.00 9.68E−01 1.09 4.12E−01 1.10 8.22E−06

KISS1 0.78 3.49E−22 0.90 3.42E−02 0.92 2.26E−01 0.84 1.05E−15

KLK2 1.08 5.39E−09 1.06 3.58E−02 0.88 1.69E−01 1.09 3.93E−05

LILRA2 1.04 3.88E−01 1.19 1.74E−06 2.22 7.91E−06 1.25 2.60E−07

MTF2 1.07 1.17E−04 1.27 1.02E−08 0.81 1.22E−01 1.15 3.07E−06
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L-5-hydroxytryptophan to serotonin, which is a well-
known vasoreactive amine. Kisspeptins are the endog-
enous cleavage products of the KiSS1 protein, they 
function as potent vasoconstrictors, and the response 
could comparable to angiotensin (Ang)-II in the coronary 
artery; In addition, Kisspeptins’ receptor, G protein-cou-
pled receptor 54, is discretely located at atherosclerosis-
prone vessels [45]. The product of CAMK2B belongs to 
serine/threonine protein kinase family. Akt (a serine/
threonine protein kinase B) is an important signaling 
mediator which includes various Akt isoforms, such as 
Akt1, Akt2, and Akt3 [46]. Researchers reported that, 
in apoE-deficient mice, the loss of Akt1 leaded to severe 
atherosclerosis [47] and Akt3 deficiency in macrophages 

promoted foam cell formation and atherosclerosis [48]. 
T lymphocytes participate in the chronic inflamma-
tory reaction and ultimately lead to the occurrence and 
development of acute coronary syndrome (ACS) [49, 
50]. CNGB1 also called GARP, Zhu et al. found that the 
expression of GARP in CD4+ T cells of ACS patients was 
lower than those of control patients [51]. Circulating 
CD4+ CD25+ GARP+ Tregs were impaired in patients 
with ACS, targeting GARP might promote the protective 
function of Tregs in ACS [52].

This study used three kinds of machine learning meth-
ods (SVM, RF and LR) to construct genetic classifica-
tion model of CAD. The SVM, RF and LR have been 
widely applied for discriminant analyses or biomarker 

Fig. 5  ROC charts of classification by SVM, RF and LR classifiers in internal and external validation datasets. SVM, support vector machine; RF, 
randomforest; LR, logistic regression; AUC, area under the ROC curve; ROC, receiver operating characteristic curve

Table 4  Validation and evaluation results of three machine learning classifiers performance

SVM, support vector machine; RF, randomforest; LR, logistic regression; Se, sensitivity; Sp, specificity; PPV, positive predictive value; NPV, negative predictive value; 
AUC, area under the ROC curve; ROC, receiver operating characteristic curve
a Verified in the 50% samples of GSE12288 (111/222)
b Verified in the integrated dataset of GSE7638 and GSE66360 (258)

Classifiers AUC (95% CI) Se (95% CI) Sp (95% CI) PPV NPV Correct rate

SVM a 0.996 (0.989, 1.000) 0.982 (0.906, 1.000) 0.907 (0.797, 0.969) 0.918 0.946 0.946

SVM b 0.813 (0.761, 0.866) 0.780 (0.707, 0.842) 0.717 (0.618, 0.803) 0.816 0.756 0.756

RF a 0.995 (0.988, 1.000) 0.983 (0.906, 1.000) 0.907 (0.797, 0.969) 0.919 0.955 0.955

RF b 0.727 (0.665, 0.788) 0.723 (0.647, 0.791) 0.525 (0.422, 0.627) 0.696 0.636 0.636

LR a 0.991 (0.971, 1.000) 0.965 (0.879, 0.996) 0.982 (0.901, 1.000) 0.982 0.973 0.973

LR b 0.783 (0.725, 0.841) 0.516 (0.435, 0.596) 0.869 (0.786, 0.928) 0.859 0.640 0.640
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identification in diseases, such as acute coronary syn-
dromes [53], osteosarcoma [54], lung adenocarcinoma 
[55], rheumatoid arthritis [56], chronic obstructive pul-
monary disease [57]. Several studies also compared these 
three classifiers to find the best one as disease classifica-
tion models [58–60]. In the present study, the SVM clas-
sifier showed the best classification efficacy (AUC in the 
internal and external validation were 0.996 and 0.813, 
respectively) and was considered as the optimal machine 
learning method in this study.

Some strengths and limitations of the current study 
should be acknowledged. Firstly, feature gene selection 
was the basis of the model construction, this study con-
ducted both WGCNA and RFE algorithm to identify 
gene features. WGCNA is an advanced systems biology-
based approach used for finding molecular mechanisms 
and for linking the information to phenotypic traits 
[19]. WGCNA has been widely and successfully used to 
identify candidate biomarkers and gene modules highly 
associated with disease [19]. The combined application 
of WGCNA and RFE in the current study might find the 
optimal gene features associated with CAD to the maxi-
mum extent. Secondly, we included a sufficient num-
ber of samples, excluded the unqualified sample, and 
removed the batch effect between datasets, which made 
our statistical analyses more reliable. Thirdly, this study 
performed three kinds of machine learning methods to 
construct classifiers, and the classification efficacy was 
compared. Finally, both internal and external validation 
were conducted to examine the performance of three 
classifiers and the best classifier was selected. Limitations 
were as follows: Firstly, we only analyzed the gene expres-
sion profiles, but the clinic information was not taken 
into account since the data was not available. Secondly, 
the optimal feature genes related to CAD should be fur-
ther validated by real-time polymerase chain reaction 
with a larger sample size and functional experiments. 
Eventually, whether the genetic classification model could 
be used in practice is currently unknown and should be 
explored in future studies.

Conclusions
In conclusion, 33 CAD-related hub genes were identi-
fied using bioinformatics analyses, and 12 OFGs were 
obtained. Among the CAD classifiers constructed by 
three machine learning methods, SVM model has the 
best performance, which proposed a deeper understand-
ing for CAD clinical diagnosis and treatment.
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